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Optimization Objectives
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What do we focus on ?

Deep LearningAuction Mechanism

RegretNet [Dütting 19 ICML]  
ALGnet [Rahme 21 ICLR] 
DeepGSP [Zhang 21 WSDM]
…

Learning-based Mechanism Design
Deep Neural NetworkMyerson Auction

Vickrey Auction
Generalized Second-Price Auction
…



Challenges

End-to-end Gradient Descent Discrete Sorting Operation

Deep Neural Network Game Theoretical Properties

Design Principles

Data Efficiency
win

lose
Data LogAdvertiser

Auction 1

Auction 2

Ambiguity 
Issue



Our Contribu5on : 

Neural Auction: making full use of the powerful deep learning on designing data-driven 
auction mechanisms for the industrial e-commerce advertising

Simple Rank Score 
Calculation Formula

Context-Aware 
Rank Score Network

Hard Sort

Differentiable Sorting 
Operator



Problem Formulation



Mechanism:                 with allocation      and pricing 
• :  Select 𝐾 ads from 𝑁 candidates
• :  Calculating payment on 𝐾 wining ads

Goals:
1. Optimizing 𝐿 performance metrics (RPM, CTR, CVR, GMV, etc.)
2. Desirable mechanism properties: IC & IR

Formulation:  
Mul4ple performance metrics op4miza4on in the compe44ve adver4sing environments



Formulation: 

• Second-Price Auctions: 
• Nice interpretability

• Easy to deploy in industry

• The score reflects the degree of ad quality

• Learning-based Second-Price Auction Framework: 
• Deep neural network based rank score function:

• The training of this non-linear model is under the guideline of optimization objective

l Allocation Scheme     : 

l Payment Rule      : 



Economic Properties
• Game Theoretical Property of Auction Mechanism:

• Incentive Compatibility (IC): truthfully report the bid
• Individual Rationality (IR): would not be charged more than their maximum willing-to-pay

• Value Maximizer:
• A value maximizer 𝑖 optimizes value 𝑣! while keeping payment 𝑝! below her maximum 

willing-to-pay 𝑚! ; when value is equal, a lower 𝑝! is preferred.
• "Value maximizer" has been widely adopted in industry, such as Yahoo! and Google.

• IC & IR conditions for Value Maximizers:
• Monotonicity: An advertiser would win the same or a higher slot if she reports a higher bid;
• Critical price: The payment for the winning advertiser is the minimum bid that she needs to 

report to maintain the same slot.



Our Approach: Neural Auction



Neural Auc5on -- Auc5on Context Encoding 

• Set Encoder: 
• Automatically extract the feature of the 

auction context from all the candidate ads 
via DeepSet [17 Nips].

• Attached as an augmented feature for each 
ad to overcome the ambiguity issue.

Set Encoder:
Deep Set Architecture

• DeepSet Aggregation:



Neural Auction -- Context-Aware Rank Score

• Partially Monotone MIN-MAX Network
• Strictly non-decreasing on bid
• The inverse transform can be directly 

obtained.

Context-Aware Rank Score Function:
Partially Monotone MIN-MAX Network

• Rank Score:

• Payment:



Neural Auc5on -- Differen5able Sor5ng Engine

• Neural Sort [ICLR19]:
• A continuous relaxation to the sorting 

operator.

• Enabling gradient-based stochastic 
optimization over the allocation & 
pricing results.



Neural Auc5on -- Model Training

• Loss Function:

: Minimizing the sum of top-K expected negated performance metrics:

: Minimizing the permutation prediction error:



Neural Auc5on -- Overall Framework



Experiments



Offline Experiments

• Data Set: 5870k records logged data from Taobao.
• Baselines: GSP, uGSP, DeepGSP [WSDM 21]
• Performance metrics: RPM, CTR, CVR, GMV
• Intuitive comparisons:



Offline Experiments

• Interpretability:

• The strong positive correlation 
between the learned rank scores and 
the performance metrics.

• Implicitly guide advertisers to 
improve ad quality and then the rank 
score.



• Data-driven IC Metric for 
Value Maximizers

• Ψ!: regret on value

• Ψ": regret on payment

Offline Experiments



Online Experiments
• Online A/B tests:

• 1% of whole production traffic
• 20210125 - 20210208 (about one billion auctions).



Conclusion



Conclusions

üWe have proposed a Deep Neural Auction mechanism, towards learning data 
efficient and end-to-end auction mechanisms with the guarantee of game 
theoretical property for e-commerce advertising.

üBoth offline and online experimental results on a real-world e-commerce ad 
platform validate the effectiveness of the proposed auction mechanism.



We hope the insights and lessons obtained from our industrial deployment would 
motivate and encourage researchers working on learning-based auction design in 
both theory and practice. 

Deployment details: https://arxiv.org/abs/2106.03593

https://arxiv.org/abs/2106.03593
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