

Optimizing Multiple Performance Metrics with Deep GSP Auctions for E-commerce Advertising

Zhilin Zhang*, Xiangyu Liu*, Zhenzhe Zheng, Chenrui Zhang, Miao Xu, Junwei Pan,

Chuan Yu, Fan Wu, Jian Xu and Kun Gai

Background

What do we focus on ?

Challenges

- ✓The performance metrics from different stakeholders often conflict with each other.
- ✓ Some metrics are **difficult to estimate** with prediction models.
- ✓ It is substantially different from the traditional **multi-objective optimization**.
- ✓ While the auction theory provides a rich set of tools for optimizing social welfare or revenue, few of them can be used to optimize the above mentioned diverse, dynamic, conflicting and feedback-based performance metrics.

Deep Learning

Our Solution

Problem Formulation

Formulation:

Multiple performance metrics optimization in the competitive advertising environments

Mechanism: $\mathcal{M}\langle \mathcal{R}, \mathcal{P}
angle$ with allocation \mathcal{R} and pricing \mathcal{P}

- • \mathcal{R} : Select *K* ads from *N* candidates
- • \mathcal{P} : Calculating payment on K wining ads

Goals:

- 1. Optimizing *L* performance metrics (RPM, CTR, CVR, GMV, etc.)
- 2. Desirable mechanism properties: Game Equilibrium & Smooth Transition

$$\begin{array}{ll} \text{maximize} & \mathbb{E}_{\mathbf{b}\sim\mathcal{D}}\left[\sum_{j=1}^{L}w_{j}\times f_{j}(\mathbf{b};\mathcal{M})\right] \\ \text{s.t.} & Game \ Equilibrium \ constraints \\ & Smooth \ Transition \ constraints \end{array}$$

Game Equilibrium (GE)

- Single-slot: Incentive Compatible (IC)
 - Myerson Theorem

 $\mathcal{R}_i(z, \boldsymbol{b}_{-i}) \geq \mathcal{R}_i(b_i, \boldsymbol{b}_{-i}) \text{ if } z > b_i$ $\mathcal{P}_{i} = inf_{z|\mathcal{R}_{i}(z, b_{-i}) = \mathcal{R}_{i}(b)}$

• Multi-slots: symmetric Nash equilibrium (SNE)

 $\beta_i(v_i - p_i) \ge \beta_i(v_i - p_i)$

- For Deep GSP:
 - \mathcal{R} : $r_i = R_{\theta}(b_i, \mathbf{x}_i)$
 - $\boldsymbol{\mathcal{P}}: p_i = R_{\boldsymbol{\beta}}^{-1}(r_{i+1}, \mathbf{x}_i)$

ba Group

Smooth Transition (ST)

The advertiser's utility would not fluctuate too much when the auction mechanism is switched towards optimizing another objective.

 $u_i(\mathcal{M}) \ge (1-\epsilon) \times \bar{u}_i(\mathcal{M}_0)$

- *U_i* : advertiser i's utility
- • \mathcal{M}_0 : a benchmark mechanism
- $\boldsymbol{\epsilon}$: a tolerant utility loss ratio for advertisers
- $\bar{u}(\mathcal{M}_0)$: the lower bound of utility, set as the average utility over a certain period under the benchmark mechanism

Our Approach: Deep GSP

\mathcal{R} : Monotone Allocation

Point-wise monotonicity constraint

• Deep rank score function:

$$r_i = R_{\theta}(b_i, \mathbf{x}_i) = b_i \times \pi_{\theta}(b_i, \mathbf{x}_i),$$

a Group

Monotonicity Evaluation

• Red markers: the real reported bid values

$$\mathcal{T}_m = \frac{1}{n} \sum \rho_{rank_{bids}, rank_{outputs}}$$

Exp	Metrics Configuration	\mathcal{T}_m
1	(1,0,0,0,0)	0.991
2	(0.5, 0.5, 0, 0, 0)	0.960
3	(0.5,0,0.5,0,0)	0.978
4	(0.5,0,0,0.5,0)	0.972
5	(0.5,0,0,0,0.5)	0.982
6	(0.6, 0.1, 0.1, 0.1, 0.1)	0.975

Offline Monotonicity performance

• \mathcal{T}_m : all above 0.96

ba Group

\mathcal{P} : Approximate Inverse Solution

- Challenge of DNN-based critical bid pricing:
 - pseudo-inverse matrices layer-by-layer
 - weight matrices are singular
- $\pi_{\theta}(b_i, \mathbf{x}_i)$ is not sensitive to the bid \rightarrow regard it as a constant

$$r_i = R_{\theta}(b_i, \mathbf{x}_i) = b_i \times \pi_{\theta}(b_i, \mathbf{x}_i),$$
$$p_i = R_{\theta}^{-1}(r_{i+1}, \mathbf{x}_i) = \frac{r_{i+1}}{\pi_{\theta}(b_i, \mathbf{x}_i)},$$

• The approximate inverse solution *pi* does not introduce much bias.

Exp	Metrics Configuration	\mathcal{T}_m	PER
1	(1,0,0,0,0)	0.991	1.009
2	(0.5, 0.5, 0, 0, 0)	0.960	0.994
3	(0.5,0,0.5,0,0)	0.978	0.988
4	(0.5,0,0,0.5,0)	0.972	0.995
5	(0.5,0,0,0,0.5)	0.982	0.999
6	(0.6, 0.1, 0.1, 0.1, 0.1)	0.975	0.995

PER: error ratio

a Group

$\mathcal{R} \& \mathcal{P}$: Incentive Compatibility Evaluation

- Individual Stage-IC Metric: [0, 1]
- $\{0, 1\} \rightarrow$ a more nuanced comparison

$$\text{i-SIC} = \lim_{\alpha \to 0} \frac{\mathbb{E}_{v \sim F} \left[\hat{u} \left((1 + \alpha) v \right) \right] - \mathbb{E}_{v \sim F} \left[\hat{u} \left((1 - \alpha) v \right) \right]}{2\alpha \cdot \mathbb{E}_{v \sim F} \left[v \cdot x(v) \right]} \quad \hat{u}(b) = b \times x(b) - p(b)$$

٠

1.

Exp	Metrics Configuration	\mathcal{T}_m	PER	IC
1	(1,0,0,0,0)	0.991	1.009	0.9878
2	(0.5, 0.5, 0, 0, 0)	0.960	0.994	0.9910
3	(0.5,0,0.5,0,0)	0.978	0.988	0.9903
4	(0.5,0,0,0.5,0)	0.972	0.995	0.9817
5	(0.5,0,0,0,0.5)	0.982	0.999	0.9856
6	(0.6, 0.1, 0.1, 0.1, 0.1)	0.975	0.995	0.9941

Deep GSP can guarantee the IC property to some extent, which is meaningful to benefit the long-term healthy development of the whole advertising ecology.

Optimization

- Model-free RL-based Optimization Framework
 - We can only evaluate these metrics via actual feedback after deploying the auction mechanism.
 - This phenomenon is similar to the exploration process in reinforcement learning
- State:
 - Ad information: bid, *pCTR*, *pCVR*, and ad category, etc
 - Advertisers' information: current budget, the price of products, marketing intent, etc
 - User features: gender, age, income level, shopping preferences, etc
- Action:
 - the outcome of the deep rank score model
- Reward: $re_i = \sum_i w_j \times f_j \eta \times \max(0, (1 \epsilon) \times \overline{u}(\mathcal{M}^0) u(\mathcal{M}))$
- No transition
- Goal:

$$R_{\theta}^* = \underset{R_{\theta}}{\operatorname{argmax}} \mathbb{E}_{\mathbf{b} \sim \mathcal{D}}[re_i | R_{\theta}]$$

Deep GSP Framework

- Actor-Critic: DDPG algorithm
- End-end training

libaba Group

$$y_i = re_i \qquad \qquad \mathcal{L}(Q_\theta) = \frac{1}{N} \sum_i (y_i - Q_\theta(s_i, a_i))^2 \qquad \qquad \mathcal{L}(R_\theta) = \frac{1}{N} \sum_i (-Q_\theta(s_i, R_\theta(s_i)) + \gamma \times \mathcal{L}_{mono})$$

Experiments

Offline Experiments

- Data Set: 5870k records logged data from Taobao.
- Baselines: GSP, uGSP
- Performance metrics: RPM, CTR, ACR (Add-to-Cart Rate), CVR, GMV
- Intuitive comparisons: $\lambda \times RPM + (1 \lambda) \times X$

Online Experiments

Table 4: Online A/B test on different metrics configurations(August 1, 2020, 1% production flow).

Exp	Metrics	RPM	CTR	ACR	CVR	GPM
1	RPM	+5.2%	+3.1%	-1.5%	+0.8%	-2.0%
2	RPM&CTR	-0.3%	+12.8%	+5.6%	+20.0%	+7.5%
3	RPM&ACR	+0.7%	+1.5%	+6.6%	+6.8%	+8.1%
4	RPM&CVR	+0.0%	+1.4%	+3.6%	+7.5%	+31.0%
5	RPM&GPM	+0.2%	+3.3%	+2.4%	+3.6%	+38.7%
6	All	+1.8%	+6.2%	+1.4%	+5.9%	+3.7%

libaba Group

Figure 5: Smooth transition between mechanisms (from CTR to RPM) by increasing ϵ from 0.0 to 1.0.

Conclusion

Conclusions

✓We focus on the problem of optimizing multiple performance metrics in online e-commerce.

✓We leverage the deep learning technique to design a new rank score function and integrate it into the GSP auction framework, i.e., Deep GSP auction.

✓ Both offline and online experimental results on a real-world e-commerce ad platform validate the effectiveness of the proposed auction mechanism.

Optimizing Multiple Performance Metrics with Deep GSP Auctions for E-commerce Advertising

in collaboration with