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Challenges

üThe performance metrics from different stakeholders often conflict with each other.

üSome metrics are difficult to estimate with prediction models.

üIt is substantially different from the traditional multi-objective optimization.

üWhile the auction theory provides a rich set of tools for optimizing social welfare or 
revenue, few of them can be used to optimize the above mentioned diverse, dynamic, 
conflicting and feedback-based performance metrics.

Our Solution

Deep LearningGSP

Deep GSP



Problem Formulation



Mechanism:                 with allocation      and pricing 

• :  Select 𝐾 ads from 𝑁 candidates

• :  Calculating payment on 𝐾 wining ads

Goals:

1. Optimizing 𝐿 performance metrics (RPM, CTR, CVR, GMV, etc.)

2. Desirable mechanism properties: Game  Equilibrium & Smooth Transition

Formulation:  
Multiple performance metrics optimization in the competitive advertising environments



Game  Equilibrium (GE)

• Single-slot: Incentive Compatible (IC)
• Myerson Theorem

• Multi-slots: symmetric Nash equilibrium (SNE)

• For Deep GSP: 
• :
• :

Roger B Myerson. Optimal auction design. Mathematics of operations research, 1981.



The advertiser’s utility would not fluctuate too much when the auction mechanism is 
switched towards optimizing another objective.

• :  advertiser i’s utility

• :  a benchmark mechanism

• :  a tolerant utility loss ratio for advertisers

• :       :  the lower bound of utility, set as the average utility over a certain period 
under the benchmark mechanism

Smooth Transition (ST)



Our Approach: Deep GSP



: Monotone Allocation

Point-wise monotonicity constraint
• Deep rank score function:



Monotonicity Evaluation

• Red markers: the real reported bid values

• : all above 0.96

Offline Monotonicity performance



: Approximate Inverse Solution

• Challenge of DNN-based critical bid pricing:
• pseudo-inverse matrices layer-by-layer
• weight matrices are singular

• is not sensitive to the bid à regard it as a constant

PER: error ratio

• The approximate inverse 
solution 𝑝𝑖 does not introduce 
much bias.



&      : Incentive Compatibility Evaluation

• Individual Stage-IC Metric: [0, 1]
• {0, 1} à a more nuanced comparison

Deng et al. A Data-Driven Metric of Incentive Compatibility, WWW 2020

applies small perturbations to bids

• Deep GSP can guarantee the IC 
property to some extent, which is 
meaningful to benefit the long-term 
healthy development of the whole 
advertising ecology.



Optimization

• Model-free RL-based Optimization Framework
• We can only evaluate these metrics via actual feedback after deploying the auction mechanism. 
• This phenomenon is similar to the exploration process in reinforcement learning

• State:
• Ad information: bid, 𝑝𝐶𝑇𝑅, 𝑝𝐶𝑉𝑅, and ad category, etc
• Advertisers’ information: current budget, the price of products, marketing intent, etc

• User features: gender, age, income level, shopping preferences, etc

• Action: 
• the outcome of the deep rank score model

• Reward:

• No transition

• Goal:



Deep GSP Framework

• Actor-Critic: DDPG algorithm
• End-end training
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Experiments



Offline Experiments

• Data Set: 5870k records logged data from Taobao.
• Baselines: GSP, uGSP
• Performance metrics: RPM, CTR, ACR (Add-to-Cart Rate), CVR, GMV
• Intuitive comparisons:



Online Experiments



Conclusion



Conclusions

üWe focus on the problem of optimizing multiple performance metrics in 

online e-commerce.

üWe leverage the deep learning technique to design a new rank score 

function and integrate it into the GSP auction framework, i.e., Deep GSP 
auction.

üBoth offline and online experimental results on a real-world e-commerce ad 

platform validate the effectiveness of the proposed auction mechanism.
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