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What do we focus on ?
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Challenges

v'The performance metrics from different stakeholders often conflict with each other.
v'Some metrics are difficult to estimate with prediction models.
v'It is substantially different from the traditional multi-objective optimization.

v'"While the auction theoty provides a rich set of tools for optimizing social welfare or
revenue, few of them can be used to optimize the above mentioned diverse, dynamic,

conflicting and feedback-based performance metrics.

Our Solution
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Formulation:

Multiple performance metrics optimization in the competitive advertising environments

Mechanism: M(R, ) with allocation R and pricing P
R : Select K ads from N candidates
«{ : Calculating payment on K wining ads

Goals:
1. Optimizing L petformance metrics (RPM, CTR, CVR, GMV, etc.)

2. Desirable mechanism properties: Game Hquilibrium & Smooth Transition

T
maximize Ejp. wi X fi(b: M
it b~D FZI i X fi( )

s.t. Game Equilibrium constraints,

Smooth Transition constraints,
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Game Equilibrium (GE)

« Single-slot: Incentive Compatible (IC)
* Myerson Theorem virtual value

Ri(z, b_;) = Ri(b;, b_;) if z > b;
?i B infzmi(Z,b—i):Ri(b)

e Multi-slots: symmetric Nash equilibrium (SNE)
pi(vi — pi) = pj(vi — pj)

> value

* For Deep GSP:
* R: ri =Rg(bi, x;)
s P p;i= Rgl(ri+1,Xi)

Roger B Myerson. Optimal auction design. Mathematics of operations research, 1981.
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Smooth Transition (ST)

The advertiser’s utility would not fluctuate too much when the auction mechanism is
switched towards optimizing another objective.

ui(M) 2 (1-€) xua;(Mo)

e Uj: advertiser i’s utility
*My: a benchmark mechanism
e € : a tolerant utility loss ratio for advertisers

« (Mp) : the lower bound of utility, set as the average utility over a certain period
under the benchmark mechanism
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Our Approach: Deep GSP
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R : Monotone Allocation

Point-wise monotonicity constraint

e Deep rank score function:

ri = Rg(bi, x;) = b; X mg(b;, x;),

N N
L™ Z max(0, —V,Ry(bi, X;)) = Z max (0, —(7g(bj, x;) + b;iVpmg(bi, x;)))
=1 i=1
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Monotonicity Evaluation

e Red markers: the real reported bid values
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P : Approximate Inverse Solution

e Challenge of DNN-based critical bid pricing:
e pseudo-inverse matrices layer-by-layer

e weight matrices are singular

e mp(b;,x;) is not sensitive to the bid < regard it as a constant

ri = Rg(bi, x;) = b; X mg(bi, x;),

R
|\ L 0 1+1, &g ﬂ@(bbxz)l

The approximate inverse
solution pi does not introduce
much bias.
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Exp | Metrics Configuration | 7, | PER
1 (1,0,0,0,0) 0.991 | 1.009
2 (0.5,0.5,0,0,0) 0.960 | 0.994
3 (0.5,0,0.5,0,0) 0.978 | 0.938
4 (0.5,0,0,0.5,0) 0.972 | 0.995
5 (0.5,0,0,0,0.5) 0.982 | 0.999
6 (0.6,0.1,0.1,0.1,0.1) | 0.975 | 0.995

PER: error ratio

a Group
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R & ¢ : Incentive Compatibility Evaluation

e Individual Stage-1C Metric: [0, 1]

e {0, 1} = a more nuanced comparison

i-SIC = lim

applies small perturbations to bids

Ey~rF |0((1 + a)v)| = Eyer [a((1 —/a)v)]

a—0

20~ By i | v-x(0))

Exp | Metrics Configuration | 7, PER IC
1 (1,0,0,0,0) 0.991 | 1.009 | 0.9878
2 (0.5,0.5,0,0,0) 0.960 | 0.994 | 0.9910
3 (0.5,0,0.5,0,0) 0.978 | 0.988 | 0.9903
4 (0.5,0,0,0.5,0) 0.972 | 0.995 | 0.9817
5 (0.5,0,0,0,0.5) 0.982 | 0.999 | 0.9856
6 (0.6,0.1,0.1,0.1,0.1) 0.975 | 0.995 | 0.9941

a(b) = bx x(b) - p(b)

e  Deep GSP can guarantee the IC

property to some extent, which is
meaningful to benefit the long-term
healthy development of the whole
advertising ecology.

Deng et al. A Data-Driven Metric of Incentive Compatibility, WWW 2020
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Optimization

Model-free RL-based Optimization Framework

* We can only evaluate these metrics via actual feedback after deploying the auction mechanism.

e This phenomenon is similar to the exploration process in reinforcement learning

State:
* Ad information: bid, pCTR, pCVR, and ad category, etc

e Advertisers’ information: current budget, the price of products, marketing intent, etc

o User features: gender, age, income level, shopping preferences, etc

e Action:

e the outcome of the deep rank score model

Reward: e Z wi X fj — n x max(0, (1 — €) X #(M") — u(M))

No transition

e Goal: RZ = argmax By o [rei|Rg]

Ro



Deep GSP Framework

e Actor-Critic: DDPG algotrithm

e End-end training

T
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L(Rg) = = 3~ Q0(si- Ro(5) + ¥ X Lmono).



Alibaba Group
- PIREEEED

Experiments




Offline Experiments

e Data Set: 5870k records logged data from Taobao.

e Baselines: GSP, uGSP
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e Performance metrics: RPM, CTR, ACR (Add-to-Cart Rate), CVR, GMV
e Intuitive comparisons: A X RPM + (1 — A) X X
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Online Experiments

Table 4: Online A/B test on different metrics configurations

(August 1, 2020, 1% production flow).

Exp Metrics RPM IR ACR CVR GPM
1 RPM +5.2% +3.1% -1.5% +0.8% -2.0%
2 RPM&CTR -0.3% | +12.8% | +5.6% | +20.0% +7.5%
3 RPM&ACR | +0.7% +1.5% | +6.6% | +6.8% +8.1%
4 RPM&CVR | +0.0% +1.4% +3.6% | +7.5% | +31.0%
5 RPM&GPM | +0.2% +3.3% +2.4% | +3.6% | +38.7%
6 All +1.8% | +6.2% | +1.4% | +5.9% +3.7%
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Figure 5: Smooth transition between mechanisms (from CTR
to RPM) by increasing ¢ from 0.0 to 1.0.
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Conclusion




Conclusions

v'We focus on the problem of optimizing multiple performance metrics in

online e-commerce.

v'We leverage the deep learning technique to design a new rank score
function and integrate it into the GSP auction framework, i.e., Deep GSP

auction.

v'Both offline and online experimental results on a real-world e-commerce ad

platform validate the effectiveness of the proposed auction mechanism.
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Optimizing Multiple Performance Metrics with Deep GSP

Auctions for E-commerce Advertising
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